Autonomic Dysfunction: Autonomic Non-Epileptic Seizures and the Autonomic Epilepsies

James J. Riviello, Jr., MD
Sergievsky Family Professor of Neurology and Pediatrics
Director, Division of Child Neurology
Department of Neurology
Columbia University Medical Center
Chief of Child Neurology
Morgan Stanley Children’s Hospital of New York Presbyterian
Introduction

• Myriad of Symptoms related to acute autonomic dysfunction: Syncope, Autonomic Epilepsia, and the Autonomic Semiology of Epilepsy

• What is a seizure, or non-epileptic seizure?
Definitions

- **Seizure**: a sudden attack (of an illness or disease); epileptic seizure: uncontrolled, hypersynchronous brain electrical activity
- **Epilepsy**: unprovoked, recurrent seizures
- **Drop Attacks**: any event in which the person falls
- **Syncope/Transient loss of consciousness**: short LOC and muscle strength
 - Usually fast onset, short duration, and fast recovery
Non-Epileptic Seizure

• Paroxysmal event that mimic an epileptic seizure but do not involve abnormal, rhythmic discharges of cortical neurons. Called a hypersynchronous neuronal discharge.

• May be caused by physiological (ie vagotonia) or psychological conditions.
Dx Epilepsy: Errors (adults)

- Psychogenic, non-epileptic seizures
- Syncope
- Hypoglycemia
- Panic attacks
- Movement Disorders
- Sleep Disorders (parasomnia, hypnic jerks)
- TIA
- Migraines (TGA)
<table>
<thead>
<tr>
<th>System</th>
<th>Dysfunction</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasomotor</td>
<td>Hypertension</td>
<td>Headache</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Hypotension</td>
<td>Dizziness, light-headedness, blurred vision, loss of consciousness or syncope</td>
</tr>
<tr>
<td></td>
<td>Arrhythmia</td>
<td>Palpitations, loss of consciousness or syncope</td>
</tr>
<tr>
<td></td>
<td>Vascular changes</td>
<td>Purple feet, mottled skin, acrocyanosis, blotching</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Oropharyngeal dysmotility</td>
<td>Feeding problems (poor suck, drooling, aspiration pneumonia)</td>
</tr>
<tr>
<td></td>
<td>Esophageal dysmotility</td>
<td>Dysphagia (difficulty swallowing)</td>
</tr>
<tr>
<td></td>
<td>Gastroesophageal reflux</td>
<td>Nausea, recurrent vomiting</td>
</tr>
<tr>
<td></td>
<td>Bowel dysmotility</td>
<td>Bloating, profound constipation, or diarrhea</td>
</tr>
<tr>
<td>Ophthalmologic</td>
<td>Alacrima</td>
<td>Dry eye</td>
</tr>
<tr>
<td></td>
<td>Nonreactive or sluggish pupil</td>
<td>Dark or light intolerance</td>
</tr>
<tr>
<td></td>
<td>Eyelid weakness</td>
<td>Ptosis</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Alveolar hypoventilation</td>
<td>Cyanosis with sleep</td>
</tr>
<tr>
<td></td>
<td>Apnea</td>
<td>Breath holding spells</td>
</tr>
<tr>
<td></td>
<td>Insensitivity to hypoxia</td>
<td>Syncope at high altitudes or plane travel</td>
</tr>
<tr>
<td></td>
<td>Insensitivity to hypercarbia</td>
<td>Muscle twitches, hypertension</td>
</tr>
<tr>
<td>Sudomotor</td>
<td>Altered sweating</td>
<td>Hypohidrosis or hyperhidrosis, excessively dry skin, clammy hands and feet, unexplained fevers, heat intolerance</td>
</tr>
<tr>
<td>Urinary</td>
<td>Nocturia</td>
<td>Frequent awakenings to urinate or nocturnal enuresis (>5) years</td>
</tr>
<tr>
<td>Central dysfunction</td>
<td>Thermoregulatory abnormalities</td>
<td>Decreased basal body temperature, unexplained high fevers</td>
</tr>
<tr>
<td></td>
<td>Sleep-wake disturbance</td>
<td>Fractured sleep, insomnia, nocturnal enuresis (>5) years of age</td>
</tr>
<tr>
<td></td>
<td>Altered affect and emotions</td>
<td>Poor socialization skills, increased anxiety, emotional lability, tics or phobias, panic attacks</td>
</tr>
<tr>
<td></td>
<td>Learning disability</td>
<td>Poor school performance, poor executive planning, attention problems, hyperactivity</td>
</tr>
</tbody>
</table>
Case History (1)

- 10 year old girl status post posterior fossa craniotomy for tumor
- Developed post-operative epilepsy, treated with AEDs
- Presented to the ED with seizure exacerbation with several seizures in 1 day
- Admitted to the PICU
Case History (2)

- Consultation to the Neurocritical Care Service
- History: her current seizures all occurred in the upright position
- Orthostatic BPs: marked drop in BP when standing
Syncope

• Common: 15 to 25% of children and adolescents
• Peak incidence 15 to 19 years; females predominate
Syncope Definitions

• Transient loss of consciousness (TLOC): loss of consciousness with a rapid onset, short duration and a spontaneous and complete recovery.

• Syncope: TLOC due to cerebral hypoperfusion

• Symptoms vary by rapidity of onset:
 • Very rapid onset:
 – may notice few features
 • Slowly developing forms (autonomic failure):
 – Difficulty in thinking, light-headedness, followed by loss of color vision and blurring or darkening of vision, sounds seem from far away
Syncope: Major Categories

- Reflex (Neurally-mediated) syncope: vasovagal situational, carotid sinus, mechanical or hydraulic factors
- Syncope due to orthostatic hypotension: primary autonomic failure, secondary autonomic failure, drug-induced autonomic failure, volume depletion
- Cardiovascular mediated syncope: arrhythmias or structural disease
- Non-cardiovascular syncope
Table 1 Differential Diagnosis of Pediatric Syncope

- Cardiovascular mediated syncope
- Neurocardiogenic syncope (vasodepressor vasovagal)
- Orthostatic hypotension
- Postural orthostatic tachycardia syndrome (POTS)
- Convulsive syncope
- Reflex syncope
- Psychogenic syncope/ panic attacks/ hyperventilation
- Situational syncope
 - Coughing
 - Sneezing
 - Micturition
 - Defecation
 - Deglutition (cold liquids)
 - Hair grooming
 - Trumpet playing
 - Suffocation
 - Weight lifting
 - Diving
 - Stretching
- Drug and toxin induced
- Metabolic
 - Hypoglycemia
 - Electrolyte disorder
 - Endocrine disorder

*Modified and reprinted with permission."
Table 2 History of “Red Flags” Requiring Urgent Referral to Pediatric Cardiology

- History of heart murmur or congenital heart disease
- Acute attacks associated with hyperpnea or cyanosis
- Syncope during exercise, including swimming or with exertion
- Family history of early sudden cardiac death, long QT syndrome, sensorineural hearing loss, familial heart disease
- Medications that can result in long QT syndrome, arrhythmias
- Absence of usual premonitory symptoms or precipitating factors associated with neurally mediated syncope
- Unusual syncope triggers such as loud noises, fright, or extreme emotional stress
Table 5 Diagnostic Evaluation of Pediatric Syncope

1. **Hematological—biochemical**
 - CBC
 - Serum iron, TIBC, ferritin
 - CMP

2. **Cardiac evaluation**
 - EKG
 - Echocardiography
 - Holter or event monitor.

3. **Autonomic evaluation**
 - Neurocardio autonomic reflex testing with and without tilt table testing
 - Quantitative sudomotor axon reflex test (QSART)
 - Thermoregulatory sweat test (TST).

4. **Miscellaneous**
 - Urine specific gravity
 - Urinary sodium levels
 - Pregnancy test in all menstruating females.

EEG, CT, and MRI of the brain are not recommended unless the loss of consciousness is suspected not to be syncope.

CBC, complete blood count; CMP, complete metabolic panel; TIBC, total iron binding capacity
Pediatric Syncope

Is Detailed Medical History the Key Point for Differential Diagnosis?

Mehmet Alper Ikiz, MD,* Ibrahim Ilker Çetin, MD,† Filiz Ekici, MD,† Alev Güven, MD,‡ Aydan Değerliyurt, MD,‡ and Gülşen Köse, MD,‡

TABLE 1. Medical History Chart

<table>
<thead>
<tr>
<th>Medical History</th>
<th>Family History</th>
<th>Position</th>
<th>Activity</th>
<th>Predisposing Factors</th>
<th>Prodromal Signs</th>
<th>During the Episode</th>
<th>After the Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac disease</td>
<td>Sudden death</td>
<td>Supine</td>
<td>Resting</td>
<td>Fear</td>
<td>Dizziness</td>
<td>Palpitation</td>
<td>Postictal stage</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>Fainting</td>
<td>Sitting</td>
<td>Exercise</td>
<td>Excitement</td>
<td>Vision loss</td>
<td>Chest pain</td>
<td>Amnesia</td>
</tr>
<tr>
<td>Febrile convulsion</td>
<td>Cardiac disease</td>
<td>Standing</td>
<td>Position change</td>
<td>Pain</td>
<td>Paleness</td>
<td>Unconsciousness</td>
<td>Headache</td>
</tr>
<tr>
<td>Cardiac operation</td>
<td>Epilepsy</td>
<td></td>
<td>Mixation</td>
<td>Blood sampling</td>
<td>Nausea</td>
<td>Incontinence</td>
<td>Nausea</td>
</tr>
<tr>
<td>Syncope history</td>
<td></td>
<td></td>
<td>Defecation</td>
<td>Fasting</td>
<td>Sweating</td>
<td>Defecation</td>
<td>Neurologic deficit</td>
</tr>
<tr>
<td>Medical therapy</td>
<td></td>
<td></td>
<td>Coughing</td>
<td>Hot environment</td>
<td>Blurred vision</td>
<td>Involuntary movements</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Metabolic disease</td>
<td></td>
<td></td>
<td>Turning the head</td>
<td>Long-standing time</td>
<td>Tinnitus</td>
<td>Jaw lock</td>
<td></td>
</tr>
<tr>
<td>Chronic disease</td>
<td></td>
<td></td>
<td></td>
<td>Hyperventilation</td>
<td>Epigastric tenderness</td>
<td>Paleness and cyanosis</td>
<td></td>
</tr>
</tbody>
</table>
Case History

• 15 year old boy referred for epilepsy monitoring for refractory drop attacks
• Failed three different antiepileptic drugs
• EEG had epileptiform features
• Also had migraines
• History: episodes only occurred when arms raised
Stretch Syncope

Figure. The typical posture resulting in stretch syncope.
Case History (1)

• 7 year old girl referred for seizure
• While mother removing a braid from her hair, c/o stomach pain, arched back, had 2 to 3 minute GTC seizure
• No prior events, rare staring spells, and headaches
• Family history positive for migraines
• Examination, CT, EEG, AEEG normal
Case History (2)

- 2 weeks later, while hair combed, c/o stomach pain, screamed, lost consciousness for 45 seconds, post-event lethargy, and paresthesias in right foot
- No further episodes until she was taken off Pb 6 months later, event in morning, while hair was being combed, stomach pain, vision dimmed, lost consciousness, ocular supraversion, clonic movements right arm
Hair-Braiding and Combing-Induced Syncope: A Paroxysmal Nonepileptic Event

James J. Riviello, Jr., and Stephen D. Rioux
Case History (1)

• 3 month old referred for diagnosis of epilepsy
• Episodes with tonic posturing occurred in the newborn period, especially with taking rectal temperature or with bowel movements
• EEG abnormal
• Episodes controlled after starting oxcarbazepine
Case History (2)

- Family history of vagotonia in mother, starting as a child
Paroxysmal extreme pain disorder (previously familial rectal pain syndrome)
Neurology 2007;69:586-595
DOI: 10.1212/01.wnl.0000268065.16865.5f
Figure 3: Frames from video-EEG of tonic attack in II:2, Family 9

(i) 10:07:40 EEG montage superimposed on frame showing harlequin colour change of face.

(ii) 18:04:48 Wiping of vulval region.

(iii) 18:05:02 Tonic posturing. Facial flushing. Tachycardia with EMG on ECG channel.

(iv) 18:05:12 Hyperekplexia-like quivering, eyes closing. EEG beginning to slow. Transition from tachycardia to bradycardia, with EMG on ECG channel.

(vi) 18:05:37 Doctor going to "resuscitate". EEG isoelectric. Bradycardia persisting.
Low Iron Storage in Children and Adolescents with Neurally Mediated Syncope

Imad T. Jarjour, MD, and Laila K. Jarjour, MB ChB, MPH

Objective To investigate whether neurally mediated syncope (NMS) is associated with low iron storage or serum ferritin (SF).

Study design 206 children evaluated between 2000 and 2004 for probable syncope at a tertiary care Pediatric Neurology Clinic were included in a retrospective study. Serum ferritin (SF), iron, total iron binding capacity, and hemoglobin were measured prospectively after initial history taking and physical examination, along with other diagnostic testing. We defined iron deficiency (ID) as SF <12 μg/L, and low iron storage as SF ≤25 μg/L.

Results Among 106 included patients with syncope, 71 had NMS and 35 had other causes of syncope. Patients with NMS, when compared with those with other causes of syncope, had a higher prevalence of low iron storage (57% vs 17%, P < .001) and lower mean values of SF (27 vs 46 μg/L, P < .001), transferrin saturation (23 vs 31 %, P < .01), and hemoglobin (13.3 vs 14 g/dL, P < .05). Only patients with NMS had ID (15%), anemia (11%), or ID with anemia (7%).

Conclusions Low iron storage or serum ferritin is associated with NMS and is a potentially pathophysiologic factor in NMS. (J Pediatr 2008;153:40-4)
Relationship Iron to neurally mediated syncope (NMS)

- Abnormal catecholamine metabolism
- Iron dependent enzymes involved in synthesis and degradation of catecholamines
CAMERA STUDY

• Cerebral abnormalities in migraine, an epidemiological risk analysis
 – Infarcts in the posterior circulation territory in migraine
 – Migraine associated with increased risk of deep white matter abnormalities, subclinical posterior circulation infarcts, and brain iron accumulation
 – Syncope in Migraine
 – Syncope, orthostatic intolerance
Syncope in migraine
The population-based CAMERA study

R.D. Thijs, MD; M.C. Kruit, MD; M.A. van Buchem, MD, PhD; M.D. Ferrari, MD, PhD;
L.J. Launer, PhD; and J.G. van Dijk, MD, PhD

Abstract—Objective: To examine the association between migraine and syncope-related autonomic nervous system (ANS) symptoms. Methods: A population-based study among migraineurs with and without aura (n = 323) and control subjects (n = 153) was conducted. A systematic questionnaire and cardiovascular measurements during rest, while standing, and after venipuncture addressed the prevalence of syncope, orthostatic intolerance, orthostatic hypotension (OH), and the postural tachycardia syndrome (POTS) in migraineurs and control subjects. Results: The lifetime prevalence of syncope in all participants was 41%, more often in women (45 vs 32%; p = 0.02). Compared with control subjects, migraineurs had a higher lifetime prevalence of syncope (46 vs 31%; p = 0.001), frequent syncope (five or more attacks) (13 vs 5%; p = 0.02), and orthostatic intolerance (32 vs 12%; p < 0.001). There was no association between ANS symptoms and the severity of migraine or migraine subtype. Cardiovascular measurements and the prevalence of POTS and OH did not differ significantly between migraineurs and control subjects. Conclusion: This population-based study demonstrated an elevated prevalence of syncope and orthostatic intolerance in migraineurs without clear interictal signs of autonomic nervous system dysfunction.

NEUROLOGY 2006;66:1034–1037
56 episodes of transient cerebral hypoxia

• 20 seconds HV while squatting, fast rise to feet, 10 second Valsalva maneuver with forced expiration against closed glottis.

• Rapidly lowers cerebral perfusion combining hypocarbic cerebral vasoconstriction, orthostasis, and decreased venous return.

• Falls cushioned by foam, helper prevented falls.

• Video camera recordings, reviewed with attention to unresponsiveness, falls, myoclonus, non-myoclonic movements, eye movements, vocalizations.
Transient LOC

- 42/59 had LOC; 13 fell without losing consciousness completely, called incomplete syncope.
- Report only on the 42; onset marked by the incipient fall, verbal responsiveness indicated its termination.
- Duration: 12.1 +/- 4.4 seconds (4.5 to 21.7 s)
- 19 had partial response after 8.2 seconds, eye and head turning toward the voice
Myoclonus

- Myoclonus in 38/42 (90%); never preceded the fall.
- Starts 2.6 sec after LOC, lasting 6.6 sec.
- Outlasted partial responsiveness in 10 and verbal responsiveness in 4. Subjects remembered the twitching.
- Focal (16%), multifocal (52%), or generalized (3%); focal duration shorter than multifocal.
- Arrhythmic in 41.
Other Motor Movements

- Lateral head turns, +/- ipsilateral gaze deviation, lip-smacking, chewing, or fumbling (resembles automatisms)
- Righting movement in 45%
- Extensor posturing in 3 patients
- Lateral tongue bite in 1
- No urinary incontinence
Eye Movements

• Eyes open in 76%
 – 66% upper deviation, others either midposition or had a lateral deviation.
 – 50% subsequent change in eye position

• Blinking in 50%
Vocalizations

- 17/42 (40%), starting 2.1 seconds after LOC
- Continuous or intermittently accentuated moan of low pitch and voice
Experience of Syncope

• Visual and auditory hallucinations in 60%
• Perception of a gray haze, colored patches, or bright lights
• Realistic scenes, involving familiar places, situations, or persons
• 4 out of body experiences
• Auditory hallucinations in 36%; never in isolation, accompanied visual
• Rushing and roaring noises, screaming, or talking voices, but never intelligible speech
• Described weightlessness, detachment, and peace; 17% had negative feelings, with helplessness and disorientation
POTS and temporal lobe epilepsy

- Single case report, 20 year old with TLE and POTS
Anoxic-epileptic event
Tongue Bite

Epilepsy
- Occurs in up to 41% of patients with GTC seizures
- Lateral tongue

Syncope
- 2-6% of patients with syncope
- Central tongue
Value of Tongue Biting in the Diagnosis of Seizures

Selim R. Benbadis, MD; Barbara R. Wolgamuth, REEGT; Hershel Goren, MD; Sorin Brener, MD; Fetnat Fouad-Tarazi, MD

Table 1. Incidence of Tongue Biting in the Three Groups*

<table>
<thead>
<tr>
<th>Patients' Group</th>
<th>Tongue Biting</th>
<th>No Tongue Biting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epileptic seizures</td>
<td>8</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>Pseudoseizures</td>
<td>0</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Syncope</td>
<td>1</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>99</td>
<td>108</td>
</tr>
</tbody>
</table>

\[\chi^2 = 15.11 \ (P = .001; \text{ exact } \chi^2 \text{ test}) \]
Autonomic Status Epilepticus in Panayiotopoulos Syndrome and Other Childhood and Adult Epilepsies: A Consensus View

Non-convulsive SE

• 50% of children with PS have NCSE (> 30 min).
• Seizures have predominantly autonomic symptoms, now called an “autonomic epilepsy” rather than an “occipital epilepsy.”
• Emesis, pallor, flushing, cyanosis, mydriasis, cardiac and temperature alterations, incontinence, salivation, intestinal motility.
• Initially awake, then develops altered awareness, gaze deviation, 50% brief hemi- or generalized convulsions.
<table>
<thead>
<tr>
<th>System</th>
<th>Symptom / Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>Emetic symptoms: nausea, retching, and vomiting</td>
</tr>
<tr>
<td></td>
<td>Abdominal (particularly epigastric) sensations of pain, hunger, or else vague</td>
</tr>
<tr>
<td></td>
<td>unpleasant or uncomfortable feelings; may include a rising sensation</td>
</tr>
<tr>
<td></td>
<td>Borborygma</td>
</tr>
<tr>
<td></td>
<td>Diarrhea</td>
</tr>
<tr>
<td></td>
<td>Fecal incontinence</td>
</tr>
<tr>
<td>Cardiorespiratory</td>
<td>Palpitations/chest pain</td>
</tr>
<tr>
<td></td>
<td>Sinus tachycardia</td>
</tr>
<tr>
<td></td>
<td>Cardiac arrhythmias and bradycardia</td>
</tr>
<tr>
<td></td>
<td>Blood pressure changes</td>
</tr>
<tr>
<td></td>
<td>Apnea</td>
</tr>
<tr>
<td></td>
<td>Hyperventilation</td>
</tr>
<tr>
<td>Vasomotor and</td>
<td>Flushing</td>
</tr>
<tr>
<td>pilomotor</td>
<td>Pallor</td>
</tr>
<tr>
<td></td>
<td>Cyanosis</td>
</tr>
<tr>
<td></td>
<td>Perspiration</td>
</tr>
<tr>
<td></td>
<td>Goose flesh</td>
</tr>
<tr>
<td>Pupillary</td>
<td>Mydriasis</td>
</tr>
<tr>
<td></td>
<td>Miosis</td>
</tr>
<tr>
<td></td>
<td>Hippus</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>Urinary incontinence</td>
</tr>
<tr>
<td></td>
<td>Erotic feelings and genital sensations</td>
</tr>
<tr>
<td></td>
<td>Erection and orgasms</td>
</tr>
<tr>
<td>Other</td>
<td>Lacrimation</td>
</tr>
<tr>
<td></td>
<td>Increased bronchial secretion</td>
</tr>
<tr>
<td></td>
<td>Fever</td>
</tr>
</tbody>
</table>
Syncope-like Epileptic Seizures in PS

- SLES defined as self-terminating events with sudden loss of postural tone and unresponsiveness, occurring with other ictal autonomic signs/symptoms (AS+SLES) or on their own (pure SLES).
- SLES in 17/33.
- With seizures, 53/74 (72%) had SLES (25 were AS+SLES and 28 had pure SLES).
- Pure SLES occurred in 7 children without premonition or triggers, did not resolve in the horizontal position, had no associated movements, even when longer than a few minutes.
- Concurrent autonomic symptoms: emesis, incontinence, mydriasis, miosis, cardiorespiratory abnormalities.
Autonomic Dysfunction in Epilepsy

• Ictal Dysautonomia
 – Ictal bradycardia, asystole
• Autonomic Nervous System and AEDs
• Autonomic Nervous System and VNS
Ictal Dysautonomia: Autonomic Manifestations of Seizures

• Pilomotor phenomenon: unilateral piloerection, ipsilateral temporal lobe; bilateral, no localization

• Ictal bradycardia, asystole: bilateral mesiotemporal (mesT) or insula
 – Ictal tachycardia: non-localizing

• Dyspnea: insula

• Hyperventilation: frontal and temporal, greater in mesial versus lateral temporal seizures

• Post-ictal cough: temporal, not right temporal as in adults

• Ictal spitting: non-dominant temporal lobe
Autonomic Manifestations of Seizures

- Ictal vomiting, nausea: anterior insula, non-dominant temporal
- Ictal laughing (gelastic): hypothalamic hamartomas, or tempora or frontal (cingulate)
 - Laughing with mirth: temporal
- Ictal smiling: non-dominant, posterior (T-P-O)
- Ictal crying (dacrystic): +/- non-dominant mesT
- Epigastric aura: TLE (mesial)
- Mydriasis, flushing: non-localizing [mesT, insula, frontal (para-saggital, orbitofrontal)]
- Urinary incontinence: frontal versus pressure
Autonomic Symptoms during Childhood Partial Epileptic Seizures

*†András Fogarasi, *‡József Janszky, and *Ingrid Tuxhorn

*Epilepsie-Zentrum Bethel, Bielefeld, Germany; and ‡Bethesda Children’s Hospital, Budapest, and ‡Department of Neurology, University of Pécs, Pécs, Hungary
TABLE 1. Frequency, localization, lateralization, and age dependence of autonomic signs observed in 100 patients 12 years or younger with partial epilepsy

<table>
<thead>
<tr>
<th>Autonomic symptoms</th>
<th>Total (n = 100)</th>
<th>Temporal (n = 61)</th>
<th>Extratemporal (n = 39)</th>
<th>p Value</th>
<th>Left (n = 54)</th>
<th>Right (n = 46)</th>
<th>p Value</th>
<th>Age dependence (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flushing</td>
<td>19</td>
<td>11</td>
<td>8</td>
<td>NS</td>
<td>7</td>
<td>12</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Postictal coughing</td>
<td>16</td>
<td>15</td>
<td>1</td>
<td>0.004</td>
<td>10</td>
<td>6</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Apnea, bradypnea</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>NS</td>
<td>7</td>
<td>5</td>
<td>NS</td>
<td><0.001<sup>a</sup></td>
</tr>
<tr>
<td>Epigastric aura</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>0.026</td>
<td>5</td>
<td>7</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Hyperventilation</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>NS</td>
<td>6</td>
<td>5</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>NS</td>
<td>3</td>
<td>6</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Hypersalivation</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>NS</td>
<td>2</td>
<td>3</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nausea</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spitting</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Miosis</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hiccups</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Belch</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>43</td>
<td>17</td>
<td>0.012</td>
<td>29</td>
<td>31</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Very rare autonomic symptoms (observed in ≤5% of patients) were not assessed with statistical methods.
NS, no significant correlation (p ≥ 0.05)
^aIctal apnea/bradypnea happened more frequently among younger patients (p < 0.001).
Ictal bradycardia, asystole
Bilateral rhythmic theta

Bradycardia followed by asystole
Autonomic Nervous System and AEDs

• Cardiac rhythm changes:
 – Phenytoin, Carbamazepine, Oxcarbazepine, Lacosamide

• Carbonic anhydrase inhibition, impaired sweating, heat intolerance:
 – Topiramate, Zonisamide

• Respiration depression with benzodiazepines with ictal autonomic symptoms
Autonomic Nervous System and VNS

- Reduction in vagal tone during SWS
- Sympathetic predominance
- 4/26 (15%) developed obstructive sleep apnea after VNS
The END